
Safe Non-blocking Synchronization in Ada 202x

Johann Blieberger and Bernd Burgstaller

Institute of Computer Engineering, Automation Systems Group, TU Wien, Austria

Department of Computer Science, Yonsei University, Korea

19.6.2018

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 1 / 23



Safe Non-blocking Synchronization in Ada 202x

Johann Blieberger and Bernd Burgstaller

Institute of Computer Engineering, Automation Systems Group, TU Wien, Austria

Department of Computer Science, Yonsei University, Korea

19.6.2018

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 2 / 23



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about updates to
the shared data encapsulated by a PO

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 3 / 23



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about updates to
the shared data encapsulated by a PO

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 3 / 23



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about updates to
the shared data encapsulated by a PO

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 3 / 23



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about updates to
the shared data encapsulated by a PO

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 3 / 23



Sequential Consistency

mutual-exclusion property of (highly-contended) locks stands in the
way to scalability of parallel programs on many-core architectures

locks do not allow progress guarantees, because a task may fail
inside a critical section, e.g., by entering an endless loop, and thereby
prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

⇒ synchronization on a finer granularity within a method’s code, via
atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction set
architecture (ISA), or the language run-time (with the help of the
CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with the
program order of each participating task

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 4 / 23



Sequential Consistency

mutual-exclusion property of (highly-contended) locks stands in the
way to scalability of parallel programs on many-core architectures

locks do not allow progress guarantees, because a task may fail
inside a critical section, e.g., by entering an endless loop, and thereby
prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

⇒ synchronization on a finer granularity within a method’s code, via
atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction set
architecture (ISA), or the language run-time (with the help of the
CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with the
program order of each participating task

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 4 / 23



Sequential Consistency

mutual-exclusion property of (highly-contended) locks stands in the
way to scalability of parallel programs on many-core architectures

locks do not allow progress guarantees, because a task may fail
inside a critical section, e.g., by entering an endless loop, and thereby
prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

⇒ synchronization on a finer granularity within a method’s code, via
atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction set
architecture (ISA), or the language run-time (with the help of the
CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with the
program order of each participating task

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 4 / 23



Sequential Consistency

mutual-exclusion property of (highly-contended) locks stands in the
way to scalability of parallel programs on many-core architectures

locks do not allow progress guarantees, because a task may fail
inside a critical section, e.g., by entering an endless loop, and thereby
prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

⇒ synchronization on a finer granularity within a method’s code, via
atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction set
architecture (ISA), or the language run-time (with the help of the
CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with the
program order of each participating task

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 4 / 23



Sequential Consistency

mutual-exclusion property of (highly-contended) locks stands in the
way to scalability of parallel programs on many-core architectures

locks do not allow progress guarantees, because a task may fail
inside a critical section, e.g., by entering an endless loop, and thereby
prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

⇒ synchronization on a finer granularity within a method’s code, via
atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction set
architecture (ISA), or the language run-time (with the help of the
CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with the
program order of each participating task

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 4 / 23



Sequential Consistency

mutual-exclusion property of (highly-contended) locks stands in the
way to scalability of parallel programs on many-core architectures

locks do not allow progress guarantees, because a task may fail
inside a critical section, e.g., by entering an endless loop, and thereby
prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

⇒ synchronization on a finer granularity within a method’s code, via
atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction set
architecture (ISA), or the language run-time (with the help of the
CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with the
program order of each participating task

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 4 / 23



Sequential Consistency

mutual-exclusion property of (highly-contended) locks stands in the
way to scalability of parallel programs on many-core architectures

locks do not allow progress guarantees, because a task may fail
inside a critical section, e.g., by entering an endless loop, and thereby
prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

⇒ synchronization on a finer granularity within a method’s code, via
atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction set
architecture (ISA), or the language run-time (with the help of the
CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with the
program order of each participating task

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 4 / 23



Non-blocking Synchronization Techniques

difficult to implement

the design of non-blocking data structures is an area of active research

a programming language must provide a strict memory model

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 5 / 23



Non-blocking Synchronization Techniques

difficult to implement

the design of non-blocking data structures is an area of active research

a programming language must provide a strict memory model

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 5 / 23



Non-blocking Synchronization Techniques

difficult to implement

the design of non-blocking data structures is an area of active research

a programming language must provide a strict memory model

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 5 / 23



Lock-free Synchronization – Example

-- Initial values:

Flag := False;

Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 loop

3 R1 := Flag;

4 exit when R1;

5 end loop;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 6 / 23



Lock-free Synchronization – Example

-- Initial values:

Flag := False;

Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 loop

3 R1 := Flag;

4 exit when R1;

5 end loop;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 6 / 23



Lock-free Synchronization – Example

-- Initial values:

Flag := False;

Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 loop

3 R1 := Flag;

4 exit when R1;

5 end loop;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 6 / 23



Lock-free Synchronization – Example

-- Initial values:

Flag := False;

Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 loop

3 R1 := Flag;

4 exit when R1;

5 end loop;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 6 / 23



Ada’s Volatile Variables

guarantee that all tasks agree on the same order of updates

⇒ sequentially consistent

however: relaxed SC for the sake of performance in contemporary
CPU architectures

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 7 / 23



Ada’s Volatile Variables

guarantee that all tasks agree on the same order of updates

⇒ sequentially consistent

however: relaxed SC for the sake of performance in contemporary
CPU architectures

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 7 / 23



Ada’s Volatile Variables

guarantee that all tasks agree on the same order of updates

⇒ sequentially consistent

however: relaxed SC for the sake of performance in contemporary
CPU architectures

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 7 / 23



Memory (Consistency) Model

ideally, all read/write operations of a program’s tasks are SC

however, the hardware memory models provided by contemporary
CPU architectures relax SC for the sake of performance

enforcing SC on such architectures may incur a noticeable
performance penalty

workable middle-ground between intuition (SC) and performance
(relaxed hardware memory models) has been established with SC for
data race-free programs (SC-for-DRF)

“SC-for-DRF” requires programmers to ensure that programs are free
of data races under SC

⇒ the relaxed memory model of a SC-for-DRF CPU guarantees SC
for all executions of such a program

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 8 / 23



Memory (Consistency) Model

ideally, all read/write operations of a program’s tasks are SC

however, the hardware memory models provided by contemporary
CPU architectures relax SC for the sake of performance

enforcing SC on such architectures may incur a noticeable
performance penalty

workable middle-ground between intuition (SC) and performance
(relaxed hardware memory models) has been established with SC for
data race-free programs (SC-for-DRF)

“SC-for-DRF” requires programmers to ensure that programs are free
of data races under SC

⇒ the relaxed memory model of a SC-for-DRF CPU guarantees SC
for all executions of such a program

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 8 / 23



Memory (Consistency) Model

ideally, all read/write operations of a program’s tasks are SC

however, the hardware memory models provided by contemporary
CPU architectures relax SC for the sake of performance

enforcing SC on such architectures may incur a noticeable
performance penalty

workable middle-ground between intuition (SC) and performance
(relaxed hardware memory models) has been established with SC for
data race-free programs (SC-for-DRF)

“SC-for-DRF” requires programmers to ensure that programs are free
of data races under SC

⇒ the relaxed memory model of a SC-for-DRF CPU guarantees SC
for all executions of such a program

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 8 / 23



Memory (Consistency) Model

ideally, all read/write operations of a program’s tasks are SC

however, the hardware memory models provided by contemporary
CPU architectures relax SC for the sake of performance

enforcing SC on such architectures may incur a noticeable
performance penalty

workable middle-ground between intuition (SC) and performance
(relaxed hardware memory models) has been established with SC for
data race-free programs (SC-for-DRF)

“SC-for-DRF” requires programmers to ensure that programs are free
of data races under SC

⇒ the relaxed memory model of a SC-for-DRF CPU guarantees SC
for all executions of such a program

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 8 / 23



Memory (Consistency) Model

ideally, all read/write operations of a program’s tasks are SC

however, the hardware memory models provided by contemporary
CPU architectures relax SC for the sake of performance

enforcing SC on such architectures may incur a noticeable
performance penalty

workable middle-ground between intuition (SC) and performance
(relaxed hardware memory models) has been established with SC for
data race-free programs (SC-for-DRF)

“SC-for-DRF” requires programmers to ensure that programs are free
of data races under SC

⇒ the relaxed memory model of a SC-for-DRF CPU guarantees SC
for all executions of such a program

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 8 / 23



Memory (Consistency) Model

ideally, all read/write operations of a program’s tasks are SC

however, the hardware memory models provided by contemporary
CPU architectures relax SC for the sake of performance

enforcing SC on such architectures may incur a noticeable
performance penalty

workable middle-ground between intuition (SC) and performance
(relaxed hardware memory models) has been established with SC for
data race-free programs (SC-for-DRF)

“SC-for-DRF” requires programmers to ensure that programs are free
of data races under SC

⇒ the relaxed memory model of a SC-for-DRF CPU guarantees SC
for all executions of such a program

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 8 / 23



SC-for-DRF

on the programming language level to guarantee DRF, means for
synchronization (ordering operations) have to be provided

Ada’s POs are well-suited for this purpose

for non-blocking synchronization, atomic operations can be used to
enforce an ordering between the memory accesses of two tasks

add language features to Ada such that atomic operations can be
employed with DRF programs

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 9 / 23



SC-for-DRF

on the programming language level to guarantee DRF, means for
synchronization (ordering operations) have to be provided

Ada’s POs are well-suited for this purpose

for non-blocking synchronization, atomic operations can be used to
enforce an ordering between the memory accesses of two tasks

add language features to Ada such that atomic operations can be
employed with DRF programs

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 9 / 23



SC-for-DRF

on the programming language level to guarantee DRF, means for
synchronization (ordering operations) have to be provided

Ada’s POs are well-suited for this purpose

for non-blocking synchronization, atomic operations can be used to
enforce an ordering between the memory accesses of two tasks

add language features to Ada such that atomic operations can be
employed with DRF programs

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 9 / 23



SC-for-DRF

on the programming language level to guarantee DRF, means for
synchronization (ordering operations) have to be provided

Ada’s POs are well-suited for this purpose

for non-blocking synchronization, atomic operations can be used to
enforce an ordering between the memory accesses of two tasks

add language features to Ada such that atomic operations can be
employed with DRF programs

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 9 / 23



Hardware support for Lock-free Synchronization

ISAs provide atomic load/store instructions only for a limited set of
primitive types

memory fences provide means for ordering memory operations

a memory fence requires that all memory operations before the fence
(in program order) must be committed to the memory hierarchy
before any operation after the fence

then, for data to be transferred from one thread to another it is not
necessary to be atomic anymore

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 10 / 23



Hardware support for Lock-free Synchronization

ISAs provide atomic load/store instructions only for a limited set of
primitive types

memory fences provide means for ordering memory operations

a memory fence requires that all memory operations before the fence
(in program order) must be committed to the memory hierarchy
before any operation after the fence

then, for data to be transferred from one thread to another it is not
necessary to be atomic anymore

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 10 / 23



Hardware support for Lock-free Synchronization

ISAs provide atomic load/store instructions only for a limited set of
primitive types

memory fences provide means for ordering memory operations

a memory fence requires that all memory operations before the fence
(in program order) must be committed to the memory hierarchy
before any operation after the fence

then, for data to be transferred from one thread to another it is not
necessary to be atomic anymore

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 10 / 23



Hardware support for Lock-free Synchronization

ISAs provide atomic load/store instructions only for a limited set of
primitive types

memory fences provide means for ordering memory operations

a memory fence requires that all memory operations before the fence
(in program order) must be committed to the memory hierarchy
before any operation after the fence

then, for data to be transferred from one thread to another it is not
necessary to be atomic anymore

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 10 / 23



Lock-free Synchronization – Example revisited

-- Initial values:

Flag := False;

Data := 0;

1 -- Task 1:

2 Data := 1;

3 -- memory f e n c e ;
4 Flag := True;

1 -- Task 2:

2 loop

3 R1 := Flag;

4 exit when R1;

5 end loop;

6 -- memory f e n c e ;
7 R2 := Data;

1 Data : Integer;

2 Flag : Boolean w i t h Atomic;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 11 / 23



Lock-free Synchronization – Example revisited

-- Initial values:

Flag := False;

Data := 0;

1 -- Task 1:

2 Data := 1;

3 -- memory f e n c e ;
4 Flag := True;

1 -- Task 2:

2 loop

3 R1 := Flag;

4 exit when R1;

5 end loop;

6 -- memory f e n c e ;
7 R2 := Data;

1 Data : Integer;

2 Flag : Boolean w i t h Atomic;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 11 / 23



Lock-free Synchronization – Example revisited

-- Initial values:

Flag := False;

Data := 0;

1 -- Task 1:

2 Data := 1;

3 -- memory f e n c e ;
4 Flag := True;

1 -- Task 2:

2 loop

3 R1 := Flag;

4 exit when R1;

5 end loop;

6 -- memory f e n c e ;
7 R2 := Data;

1 Data : Integer;

2 Flag : Boolean w i t h Atomic;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 11 / 23



Concurrent Objects

define non-blocking concurrent objects similar to protected objects

entries of concurrent objects will not block on guards; they will spin
until the guard evaluates to true

functions, procedures, and entries of concurrent objects are allowed
to execute and to modify the encapsulated data in parallel

private entries for concurrent objects are supported

concurrent objects will use synchronized types for synchronizing
data access

aspect Synchronized Components (similar to Ada2012’s aspect
atomic, . . . )

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 12 / 23



Concurrent Objects

define non-blocking concurrent objects similar to protected objects

entries of concurrent objects will not block on guards;

they will spin
until the guard evaluates to true

functions, procedures, and entries of concurrent objects are allowed
to execute and to modify the encapsulated data in parallel

private entries for concurrent objects are supported

concurrent objects will use synchronized types for synchronizing
data access

aspect Synchronized Components (similar to Ada2012’s aspect
atomic, . . . )

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 12 / 23



Concurrent Objects

define non-blocking concurrent objects similar to protected objects

entries of concurrent objects will not block on guards; they will spin
until the guard evaluates to true

functions, procedures, and entries of concurrent objects are allowed
to execute and to modify the encapsulated data in parallel

private entries for concurrent objects are supported

concurrent objects will use synchronized types for synchronizing
data access

aspect Synchronized Components (similar to Ada2012’s aspect
atomic, . . . )

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 12 / 23



Concurrent Objects

define non-blocking concurrent objects similar to protected objects

entries of concurrent objects will not block on guards; they will spin
until the guard evaluates to true

functions, procedures, and entries of concurrent objects are allowed
to execute and to modify the encapsulated data in parallel

private entries for concurrent objects are supported

concurrent objects will use synchronized types for synchronizing
data access

aspect Synchronized Components (similar to Ada2012’s aspect
atomic, . . . )

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 12 / 23



Concurrent Objects

define non-blocking concurrent objects similar to protected objects

entries of concurrent objects will not block on guards; they will spin
until the guard evaluates to true

functions, procedures, and entries of concurrent objects are allowed
to execute and to modify the encapsulated data in parallel

private entries for concurrent objects are supported

concurrent objects will use synchronized types for synchronizing
data access

aspect Synchronized Components (similar to Ada2012’s aspect
atomic, . . . )

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 12 / 23



Concurrent Objects

define non-blocking concurrent objects similar to protected objects

entries of concurrent objects will not block on guards; they will spin
until the guard evaluates to true

functions, procedures, and entries of concurrent objects are allowed
to execute and to modify the encapsulated data in parallel

private entries for concurrent objects are supported

concurrent objects will use synchronized types for synchronizing
data access

aspect Synchronized Components (similar to Ada2012’s aspect
atomic, . . . )

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 12 / 23



Concurrent Objects

define non-blocking concurrent objects similar to protected objects

entries of concurrent objects will not block on guards; they will spin
until the guard evaluates to true

functions, procedures, and entries of concurrent objects are allowed
to execute and to modify the encapsulated data in parallel

private entries for concurrent objects are supported

concurrent objects will use synchronized types for synchronizing
data access

aspect Synchronized Components (similar to Ada2012’s aspect
atomic, . . . )

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 12 / 23



Memory Order and Constraints for Compilers and CPUs

relaxed: no inter-thread constraints

release/acquire: writing thread releases the data / reading thread
acquires the data

sequentially consistent: all threads observe the same, total order of
operations

semantics are enforced by compiler and CPU, e.g. via memory fences

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 13 / 23



Memory Order and Constraints for Compilers and CPUs

relaxed: no inter-thread constraints

release/acquire: writing thread releases the data / reading thread
acquires the data

sequentially consistent: all threads observe the same, total order of
operations

semantics are enforced by compiler and CPU, e.g. via memory fences

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 13 / 23



Memory Order and Constraints for Compilers and CPUs

relaxed: no inter-thread constraints

release/acquire: writing thread releases the data / reading thread
acquires the data

sequentially consistent: all threads observe the same, total order of
operations

semantics are enforced by compiler and CPU, e.g. via memory fences

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 13 / 23



Memory Order and Constraints for Compilers and CPUs

relaxed: no inter-thread constraints

release/acquire: writing thread releases the data / reading thread
acquires the data

sequentially consistent: all threads observe the same, total order of
operations

semantics are enforced by compiler and CPU, e.g. via memory fences

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 13 / 23



Synchronized Variables

aspect Synchronized (inside of COs)

read accesses labeled via attribute Concurrent Read

write accesses labeled via attribute Concurrent Write

parameter Memory Order

Sequentially Consistent (default)
Acquire (only for reads)
Release (only for writes)
Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 14 / 23



Synchronized Variables

aspect Synchronized (inside of COs)

read accesses labeled via attribute Concurrent Read

write accesses labeled via attribute Concurrent Write

parameter Memory Order

Sequentially Consistent (default)
Acquire (only for reads)
Release (only for writes)
Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 14 / 23



Synchronized Variables

aspect Synchronized (inside of COs)

read accesses labeled via attribute Concurrent Read

write accesses labeled via attribute Concurrent Write

parameter Memory Order

Sequentially Consistent (default)
Acquire (only for reads)
Release (only for writes)
Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 14 / 23



Synchronized Variables

aspect Synchronized (inside of COs)

read accesses labeled via attribute Concurrent Read

write accesses labeled via attribute Concurrent Write

parameter Memory Order

Sequentially Consistent (default)

Acquire (only for reads)
Release (only for writes)
Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 14 / 23



Synchronized Variables

aspect Synchronized (inside of COs)

read accesses labeled via attribute Concurrent Read

write accesses labeled via attribute Concurrent Write

parameter Memory Order

Sequentially Consistent (default)
Acquire (only for reads)

Release (only for writes)
Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 14 / 23



Synchronized Variables

aspect Synchronized (inside of COs)

read accesses labeled via attribute Concurrent Read

write accesses labeled via attribute Concurrent Write

parameter Memory Order

Sequentially Consistent (default)
Acquire (only for reads)
Release (only for writes)

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 14 / 23



Synchronized Variables

aspect Synchronized (inside of COs)

read accesses labeled via attribute Concurrent Read

write accesses labeled via attribute Concurrent Write

parameter Memory Order

Sequentially Consistent (default)
Acquire (only for reads)
Release (only for writes)
Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 14 / 23



Synchronized Variables – Examples

X: integer with Synchronized;

Y: integer with Synchronized;

...

X’Concurrent Write(Memory Order => Release) :=

Y’Concurrent Read(Memory Order => Acquire);

variable specific default values via aspects

X: integer with Synchronized, Memory Order Write => Release;

Y: integer with Synchronized, Memory Order Read => Acquire;

...

X := Y;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 15 / 23



Synchronized Variables – Examples

X: integer with Synchronized;

Y: integer with Synchronized;

...

X’Concurrent Write(Memory Order => Release) :=

Y’Concurrent Read(Memory Order => Acquire);

variable specific default values via aspects

X: integer with Synchronized, Memory Order Write => Release;

Y: integer with Synchronized, Memory Order Read => Acquire;

...

X := Y;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 15 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)

Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)

Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)

Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Read-Modify-Write Variables

e.g. mapped to compare&swap operations (CAS)

CAS(variable, new value, expected value)

aspect Read Modify Write ⇒ aspect Synchronized

write access via the attribute Concurrent Exchange

parameters Memory Order Success and Memory Order Failure

Sequentially Consistent (default)
Acquire

Release (success only)
Relaxed

read access via attribute Concurrent Read

parameter Memory Order

Sequentially Consistent (default)
Acquire

Relaxed

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 16 / 23



Example Lock-free Stack (1/2)

s u b t y p e Data i s Integer;

t y p e List;

t y p e List_P i s a c c e s s List;

t y p e List i s
r e c o r d

D: Data;

Next: List_P;

end r e c o r d ;

Empty: e x c e p t i o n ;

c o n c u r r e n t Lock_Free_Stack

i s
e n t r y Push(D: Data);

e n t r y Pop(D: out Data);

p r i v a t e
Head: List_P w i t h Read Modi fy Wr i te ,

Memory Order Read => Relaxed ,

M e m o r y O r d e r W r i t e S u c c e s s => R e l e a s e ,

M e m o r y O r d e r W r i t e F a i l u r e => R e l a x e d ;

end Lock_Free_Stack;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 17 / 23



Example Lock-free Stack (2/2)

c o n c u r r e n t body Lock_Free_Stack i s
e n t r y Push (D: Data)

u n t i l Head = Head ’OLD i s
New_Node: List_P := new List;

b e g i n
New_Node. a l l := (D => D, Next => Head);

Head := New_Node; -- RMW

end Push;

e n t r y Pop(D: out Data)

u n t i l Head = Head ’OLD i s
Old_Head: List_P;

b e g i n
Old_Head := Head;

i f Old_Head /= n u l l then
Head := Old_Head.Next; -- RMW

D := Old_head.D;

e l s e
r a i s e Empty;

end i f ;
end Pop;

end Lock_Free_Stack;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 18 / 23



Example – Generic Release-Acquire Object (1/2)

g e n e r i c
t y p e Data i s p r i v a t e ;

package Generic_Release_Acquire i s

c o n c u r r e n t RA

i s
p r o c e d u r e Write (d: Data);

e n t r y Get (D: out Data);

p r i v a t e
Ready: Boolean := false w i t h S y n c h r o n i z e d ,

Memory Order Read => Acqu i re ,

Memory Order Write => R e l e a s e ;
Da: Data;

end RA;

end Generic_Release_Acquire;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 19 / 23



Example – Generic Release-Acquire Object (2/2)

package body Generic_Release_Acquire i s

c o n c u r r e n t body RA i s

p r o c e d u r e Write (D: Data) i s
b e g i n

Da := D;

Ready := true;

end Write:

e n t r y Get (D: out Data)

u n t i l Ready i s
-- spin -lock until released , i.e., Ready = true;

-- only sync. variables and constants allowed

-- in guard expression

b e g i n
D := Da;

end Get;

end RA;

end Generic_Release_Acquire;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 20 / 23



API

package Memory_Model i s

t y p e Memory_Order_Type i s (

S e q u e n t i a l l y C o n s i s t e n t ,

Relaxed ,

Acqu i re ,

R e l e a s e );
s u b t y p e Memory_Order_Success_Type i s Memory_Order_Type;

s u b t y p e Memory_Order_Failure_Type i s Memory_Order_Type

r a n g e S e q u e n t i a l l y C o n s i s t e n t .. A c q u i r e ;

g e n e r i c
t y p e Some_Synchronized_Type i s p r i v a t e ;

w i t h f u n c t i o n Update r e t u r n Some_Synchronized_Type;

Read_Modify_Write_Variable: i n out Some_Synchronized_Type

w i t h R e a d M o d i f y W r i t e ;
Memory Order Success : Memory_Order_Success_Type :=

S e q u e n t i a l l y C o n s i s t e n t ;
M e m o r y O r d e r F a i l u r e : Memory_Order_Failure_Type :=

S e q u e n t i a l l y C o n s i s t e n t ;
f u n c t i o n R e a d M o d i f y W r i t e r e t u r n Boolean;

end Memory_Model;

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 21 / 23



More examples. . .

. . . can be found in a Technical Report (cf. proceedings)

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 22 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax

, scheduling, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling

, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling, non-blocking barriers

, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23



Conclusion and Future Work

concurrent objects for encapsulating non-blocking data structures
on a high abstraction level

synchronized and read-modify-write types which support the
expression of memory ordering operations at a sufficient level of detail

concurrent objects provide SC for programs without data races

SC-for-DRF memory model is well-aligned with Ada’s semantics for
blocking synchronization via protected objects

safe

easy to understand

open issues: syntax, scheduling, non-blocking barriers, integrating
with other parallel programming features planned for Ada202x, . . .

Johann Blieberger and Bernd Burgstaller Safe Non-blocking Synchronization in Ada 202x 23 / 23


	Introduction
	The Memory Model
	Synchronization primitives
	Examples
	API
	Conclusion and Future Work

